42nd INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round One - 2010

MARKING SCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.

Formulae can be given by any conventional method (i.e. structural or molecular).

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once in the whole paper.

Total 61 marks.

Quest		Ans	swer	Marks
(a)		Ambrox ($C_{16}H_{28}O$) has a molar mass of ((16*12.01)+(28*1.008)+(1*16)) = 236.384 g mol ⁻¹ . 10000000 g produced every year, therefore (10000000/236.384) =		1 mark
		4.2x10 ⁴ moles of Ambrox are prod		
(b)		A O S S O S O S O S O S O S O S O S O S	B	1 mark per correct structure
		C ₁₆ H ₂₈ O ₃ S	C ₁₆ H ₂₅ N Accept structures with the nitrile group shown as CN	-
		С	D	
		ОН ОН С ₁₆ H ₂₆ O ₂	OH OH C ₁₆ H ₃₀ O ₂	
		Accept structures with the carboxyl group shown as COOH.		
(c)	i)	The percentage yields for each stern yield of 24.87 %.	ep are combined to give an overall	1 mark
	Number of moles of (-)-drimenol needed = (number of moles of Ambrox produced in a year)/(overall yield) = (42304.5/0.2487) = 170102.5 moles of (-)-drimenol		all yield) = (42304.5/0.2487) =	1 mark
		(-)-drimenol has a molar mass of ((15*12.01)+(26*1.008)+(1*16)) = 222.358 g mol ⁻¹ .		
		The mass of (-)-drimenol needed i 38 tonnes.	s therefore (222.358*170102.5) =	
		Also accept correctly worked solutions using the candidate's answers to (a) and (c) i).		
		Do not penalise candidates for roupart of the calculation.	unding values in the intermediate	

drimenol in bark) = $37.825/0.005 = \frac{7.6 \times 10^3}{1000} = \frac{37.825}{1000} = 37.82$	
Also accept correctly worked solutions using the candidate's answer to (c) ii).	

Ques	tion 2		
		Answer	Marks
(a)		% Cu = 27.58%	2 marks
(b)	i)	$Ag^+ + Cl^- \rightarrow AgCl$ OR $AgNO_3 + Cl^- \rightarrow AgCl + NO_3^-$	1 mark
	ii)	% CI = 38.46%	2 marks
(c)	i)	Oxygen	1 mark
	ii)	C:H:N:Cu:Cl = 8:24:2:2:5 2 marks or nothing.	2 marks
	iii)	[Cu ₄ Cl ₁₀ O] ⁴⁻	1 mark

Quest	Question 3				
		Answer	Marks		
(a)		U + 3CIF ₃ → UF ₆ + 3CIF The Ag and CI in AgCI should be circled.	1 mark		
()					
(c)	i)	$3IF \longrightarrow I_2 + IF_3$ $5IF_3 \longrightarrow I_2 + 3IF_5$ $7IF_5 \longrightarrow I_2 + 5IF_7$	3 marks		
	ii)	$3IF \longrightarrow I_2 + IF_3$ $\Delta_r H^{\theta} = -3\Delta_r H^{\theta}(IF) + \Delta_r H^{\theta}(IF_3) = (286.2 - 486) \text{ kJ mol}^{-1} = -199.8 \text{ kJmol}^{-1}$			
		$5IF_3$ → I_2 + $3IF_5$ $Δ_rH^\theta = -5Δ_rH^\theta(IF_3) + 3Δ_rH^\theta(IF_5) = (2430 - 2529) \text{ kJ mol}^{-1} = -99 \text{ kJ mol}^{-1}$	3 marks		
		$7IF_5 \longrightarrow I_2 + 5IF_7$ $\Delta_r H^{\theta} = -7\Delta_r H^{\theta} (IF_5) + 5\Delta_r H^{\theta} (IF_7) = (5901 - 4812.5) \text{ kJ mol}^{-1} = +1088.5$ kJ mol ⁻¹			
	iii)	IF ₅ doesn't disproportionate.	1 mark		

Quest		Answer	Marks
(a)	i)	A = Water vapour (or gas), B = Ice (or solid), C = Liquid water (or liquid)	1 mark
	ii)	Both correct (2 marks). One mark for each correct temperature (can be either in °C or K). Must indicate clearly that temperatures correspond to the point on the graph where the lines intersect to get the marks.	2 marks
(b)	i)	Chemical Potential Chemical Potential of a Salt Solution Temperature (1 mark) Accurate positioning is not required but line they have drawn must be below line C at all points.	1 mark
	ii)	Higher than Water	1 mark
(c)	i)	RMM (H_2O) = 18.016 Density of H_2O = 1000 g dm ⁻³ Concentration of Water = Density/RMM = 55.5 mol dm ⁻³	1 mark
	ii)	Concentration of NaCl = 3.00 mol dm^{-3} Concentration of ions = 6.0 mol dm^{-3} Concentration of H ₂ O = 55.5 mol dm^{-3} Mole fraction of ions (x _i) = $6.0/(6.0 + 55.5)$ = 0.10	1 mark

(d)	i)	$\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$ $\Delta T = (0.0976 \times 8.314 \times 273 \times 273)/6010$ $\Delta T = 10.1 \text{ K}$ Freezing Point = -10.1 °C or 262.9 K All correct (2 marks) [Error Carried Forward – Answer should be 103.1 x Answer to part c) ii)] If enthalpy is used in kJ without	2 marks
	ii)	converting then 1 mark . $x_i = \frac{\Delta T \Delta_m H^{\Theta}}{R T_m^2}$ $x_i = (21.1 \text{ x } 6010)/(8.314 \text{ x } 273 \text{ x } 273)$ $x_i = 0.205$ $x_i = [\text{ions}]/([\text{ions}] + [\text{water}])$ $0.205 = [\text{ions}]/([\text{ions}] + [55.5])$ Rearranging, [ions] = 14.31 mol dm ⁻³ Concentration of NaCl = 7.16 mol dm ⁻³	2 marks
(e)		All correct (2 marks) Correct calculation of x_i (1 mark). If x_i incorrect but correct calculation to work out [NaCl] from x_i (1 mark) Concentration of CaCl ₂ = 3.0 mol dm ⁻³ Concentration of ions = 9.0 mol dm ⁻³ Concentration of H ₂ O total = 55.5 mol dm ⁻³ Concentration of Free H ₂ O = 55.5 – (9 x 3.0) = 28.5 mol dm ⁻³ Mole fraction of ions (x_i) = 9.0/(9.0 + 28.5) = 0.240 $\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$ $\Delta T = (0.240 \times 8.314 \times 273 \times 273)/6010$ $\Delta T = 24.7 \text{ K}$	2 marks
		Freezing Point = -24.74 °C or 248.3 K All correct (2 marks). If [ions] of 6.0 mol dm ⁻³ used or failure to account for bound water but all else correct (1 mark). (Final answer should be $x_i \times 103.1$). If more than one mistake made in calculation of x_i no marks.	

		Ans	swer	Marks
(a)		i) +4 ii) +8	iii) +6	All correct = 1 2 correct = ½
(b)		Oxidation		1 mark
(c)		OsO ₄		1 mark
(d)		+6		1 mark
(e)	i)	H ₃ C CH ₂ CH ₃	ii) H ₃ C CH ₂ CH ₃	All correct = 2 2 correct = ½
	iii)	H ₃ C CH ₂ CH ₃	iv) H ₃ C CH ₂ CH ₃	2 COITECT - /2
(f)	i)	3	,	1 mark
		DIOL	ALKENE	
(f)	ii)	HO CH2CH3	CH ₂ CH ₃	
	,	H ₃ CH ₂ C OH	H ₃ CH ₂ C	
		HO CH2CH3	CH ₂ CH ₃	
		H ₃ CH ₂ C OH	H ₃ CH ₂ C	
		HO CH ₂ CH ₃ H ₃ CH ₂ C OH	H ₃ CH ₂ C CH ₂ CH ₃	
		(1 mark) for each correct pair of diol and alkene to a maximum of (3 marks) if all correct. If meso compound is drawn twice do not penalise again if answer to f) i) is 4. No marks are awarded for correct diol with incorrect or missing alkene, or for alkene on its own.		3 marks
(g)		5 8 9 12		
		All correct (2 marks); (½ mark for each correct number). If more than four numbers are given then (minus ½ mark) for each additional answer above the first four down to a minimum of zero.		2 marks

Question 6				
		Answer	Marks	
(a)		Mass of a gold atom = $197 \text{ g mol}^{-1} / 6.02 \times 10^{23} \text{ mol}^{-1} = 3.27 \times 10^{-22} \text{ g}$	1 mark	
(b)		Number of atoms in unit cell = $(8 \times 1/8) + (6 \times 1/2) = 4$	1 mark	
(c)	i)	If a is the length of the unit cell edge and r is the radius of an atom: $a\sqrt{2} = 4r$	1 mark	
		length AB = $4r/\sqrt{2} = 2\sqrt{2} \times r$		
	ii)	volume of unit cell = $32r^3$ / $\sqrt{2}$ = $16\sqrt{2} \times r^3$	1 mark	
	iii)	length of body diagonal $a\sqrt{3} = 2\sqrt{6} \times r$	1 mark	
(d)		Molar volume of gold = $197 \text{ g mol}^{-1} / 19.3 \text{ g cm}^{-3} = 10.2 \text{ cm}^3 \text{ mol}^{-1}$	1 mark	
(e)		Fraction = 4 × volume of gold atom / unit cell volume = $(4 \times 4/3 \text{ mr}^3) / (16\sqrt{2} \times r^3) = \pi\sqrt{2} / 6 = 0.74$	1 mark	
		Can accept π√2 / 6		
(f)		Radius of gold atom = [(volume of gold atom) / $(4/3)\pi$] ^{1/3} = [(10.2 cm ³ mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹) × 0.74 / $(4/3)\pi$] ^{1/3} = 1.44 × 10 ⁻⁸ cm	1 mark	
(g)	i)	Surface area of dome = $\frac{1}{2} \times 4\pi (21 \text{ m} / 2)^2 = 693 \text{ m}^2$	1 mark	
		Volume of gold = $80\ 000\ g\ /\ 19.3\ g\ cm^{-3}\ = 4\ 145\ cm^3 = 0.004\ 145\ m^3$		
		Average thickness of gold = $0.004\ 145\ m^3\ /\ 693\ m^2 = 6.0\times 10^{-6}\ m = 6.0\times 10^{-4}\ cm$		
	ii)	Thickness of a layer of gold atoms = $(2\sqrt{6} \times r) / 3 = 2.35 \times 10^{-8}$ cm Number of layers of gold atoms = 6.0×10^{-4} cm $/ 2.35 \times 10^{-8}$ cm = 2.5×10^{4}	1 mark	
		Only penalise once for error carried forward		