

46th INTERNATIONAL CHEMISTRY OLYMPIAD

2014

UK Round One

MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Question	1	2	3	4	5	Total
Marks Available	9	9	13	18	16	65

1. This question is about controlling phosphate levels

- (a) (i) $La_2(CO_3)_3 + 6HCI \rightarrow 2LaCl_3 + 3H_2O + 3CO_2$ State symbols not required
 - (ii) $La^{3+} + PO_4^{3-} \rightarrow LaPO_4$ State symbols not required
- (b) $2La(NO_3)_3 + 3Na_2CO_3 \rightarrow La_2(CO_3)_3 + 6NaNO_3$ State symbols not required
- (c) (i) O H CI CI CI CI

Do not accept a molecular formula. Accept if O–H bond not drawn out, but all other bonds must be drawn out.

- (ii) $La_2O_3 + 6CCI_3CO_2H \rightarrow 2La(CCI_3CO_2)_3 + 3H_2O$ State symbols not required
- (iii) $2La(CCl_3CO_2)_3 + 3H_2O \rightarrow La_2(CO_3)_3 + 6CHCl_3 + 3CO_2$ State symbols not required
- (d) $2LaCl_3 + 6NH_4HCO_3 \rightarrow La_2(CO_3)_3 + 6NH_4CI + 3CO_2 + 3H_2O$ State symbols not required
- (e) (i) Amount of $La^{3+} = 1000 \text{ mg} / 138.91 \text{ g mol}^{-1} = 7.20 \times 10^{-3} \text{ mol}$ Amount of $La_2(CO_3)_3 \cdot 2H_2O = 3.60 \times 10^{-3} \text{ mol}$ Molar mass of $La_2(CO_3)_3 \cdot 2H_2O = (2 \times 138.91 + 3 \times 12.01 + 11 \times 16.00 + 4 \times 1.008) \text{ g mol}^{-1}$ = 493.88 g mol⁻¹ Mass of $La_2(CO_3)_3 \cdot 2H_2O = 493.88 \text{ g mol}^{-1} \times 3.60 \times 10^{-3} \text{ mol}$ = 1780 mg (or 1.78 g)
 - (ii) Amount of La³⁺ = 7.20×10^{-3} mol = Amount of PO₄³⁻

 Molar Mass of PO₄³⁻ = $(30.97 + 4 \times 16.00)$ g mol⁻¹ = 94.97 g mol⁻¹

 Mass of PO₄³⁻ removed = 7.20×10^{-3} mol × 94.97 g mol⁻¹

 = 684 mg (or 0.684 g)

 Allow ECF when an incorrect amount of La³⁺ from (e)(i) has been used correctly in this calculation.

2. This question is about a sodium street lamp

 $1s^2$, $2s^2$, $2p^6$, $3s^1$ (a) 1 (b) 3s 1 Energy = $6.626 \times 10^{-34} \text{ J s} \times 2.998 \times 10^8 \text{ m s}^{-1} / 589 \times 10^{-9} \text{ m}$ (c) (i) 1 $= 3.37 \times 10^{-19} \text{ J (atom}^{-1})$ (ii) Energy per mole = $3.37 \times 10^{-19} \text{ J} \times 6.02 \times 10^{23} \text{ mol}^{-1}$ $= 2.03 \times 10^5 \text{ J mol}^{-1}$ 1 $= 203 \text{ kJ mol}^{-1}$ Allow ECF from (c)(i) Zero infinity (d) one the constant k 1 Energy change = I.E. (nd) – I.E. (3p) (e) 2 Note this answer is negative as energy is given out. Award one mark for the expression: Energy change = I.E. (3p) – I.E. (nd) Intercept = 0.00245 nm^{-1} (Allow values from $0.00243 - 0.0247 \text{ nm}^{-1}$) **(f)** (i) I.E. (3p) = $6.626 \times 10^{-34} \text{ J s} \times 2.998 \times 10^8 \text{ m s}^{-1} \times 2.45 \times 10^6 \text{ m}^{-1}$ 1 $= 4.87 \times 10^{-19} \text{ J (atom}^{-1})$ (ii) Ionisation energy of sodium = l.E. (3p) + ΔE (3s \rightarrow 3p) I.E. (3p) = $4.87 \times 10^{-19} \text{ J (atom}^{-1}) \times 6.02 \times 10^{23} \text{ mol}^{-1}$ $= 293 \text{ kJ mol}^{-1}$ 1

Ionisation energy of sodium = 293 kJ mol⁻¹ + 203 kJ mol⁻¹

Allow ECF from (c)(ii) or (f)(i), as long as they have shown that these two quantities must be added together, and both in the units of kJ mol-1

 $= 496 \text{ kJ mol}^{-1}$

3. This question is about spot cream

(a) Effective density of tazarotene = $0.90 \text{ g cm}^{-3} \times 0.0005 = 0.00045 \text{ g cm}^{-3}$ = 0.45 g dm^{-3} Concentration of tazarotene = $0.45 \text{ g dm}^{-3} / 351.46 \text{ g mol}^{-1}$ = 0.00128 M (or 1.28 mM)

Ε

c[□]

1

1

$$\mathbf{F}$$
 \mathbf{G}^{\ominus}
 \mathbf{G}^{\ominus}
 \mathbf{I}

The alkyne C–H bond does not have to be explicitly drawn in (as in normal skeletal structure drawing).

4. This question is about bombardier beetle

(a) (i) $2H_2O_2 \rightarrow 2H_2O + O_2$ State symbols not required

(ii) Oxidation Reduction Disproportionation Hydrolysis Dehydration 1

(b) Combining $2H_2O_2 \rightarrow 2H_2O + O_2$ and $\mathbf{A} + \frac{1}{2}O_2 \rightarrow \mathbf{B} + H_2O$ gives $H_2O_2 + \mathbf{A} \rightarrow \mathbf{B} + 2H_2O$

(c) (i) Amount of energy = specific heat capacity ×temp. change ×mass of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 80 \text{ K} \times 1000 \text{ g}$ = 334 kJ

(ii) Conc. of H_2O_2 in mixed solution = energy needed per litre / enthalpy change per mole of H_2O_2

 $= 334 \text{ kJ dm}^{-3} / 203 \text{ kJ mol}^{-1}$

 $= 1.65 \text{ mol dm}^{-3}$

Therefore with equal volumes mixed, conc. of H_2O_2 initially must be double this value = 3.30 mol dm⁻³

Award one mark for the value of 1.65 mol dm⁻³, and one mark for the realisation of the need to double the concentration. Allow ECF from (c)(i).

2

(d) (i) 6

(ii) 3

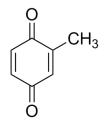
(e) Peak I O-H 1
Peak II C-H 1

(f) (i) –OH (or hydroxyl) 1

(ii) –CH₃ (or methyl)

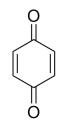
All correct: two marks, two correct: one mark, one correct: half a mark

(h)


1

Compound A

1


Compound **C**

(i)

1

Compound **B**

1

Compound **D**

5. This question is about fire and ice

- (a) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ State symbols not required
- (b) (i) Amount of CH_4 = amount of CO_2 = amount of $CaCO_3$ Amount of $CaCO_3$ = 84.73 g / 100.09 g mol⁻¹ = 0.847 mol Amount of H_2O = 116.92 g / 18.016 g mol⁻¹ = 6.49 mol $(CH_4)_x(H_2O)_y + 2xO_2 \rightarrow xCO_2 + (2x+y)H_2O$ So x = 0.847 mol, and 2x+y = 6.49 mol Therefore $y = 6.49 - (2 \times 0.847) = 4.80$ mol Expressing as integers: x = 3, y = 17Award one mark for correct calculation of the amount of $CaCO_3$ and H_2O , one mark for correct algebraic expression or equivalent and one

mark for final answer. Correct final values score full credit.

- (ii) $(CH_4)_3(H_2O)_{17} M_r = 354.40 \text{ g mol}^{-1};$ therefore 2835.18 g mol $^{-1}$ / 354.40 g mol $^{-1}$ = 8 1 Molecular formula is $(CH_4)_{24}(H_2O)_{136}$
- (c) Amount of CH₄ = $6.67 \times 10^{14} \text{ g} / 16.04 \text{ g mol}^{-1} = 4.16 \times 10^{13} \text{ mol}$ $V = nRT/p = 4.16 \times 10^{13} \text{ mol} \times 8.31 \text{ J K}^{-1} \text{ mol}^{-1} \times 254 \text{ K} / 1.0 \times 10^{5} \text{ Pa}$ $= 8.78 \times 10^{11} \text{ m}^{3}$
- (d) (i) Mass % of methane in methane hydrate = $(8 \times 16.04) \text{ g mol}^{-1} / 957.07 \text{ g mol}^{-1}$ 1 = 13.4%
 - (ii) Mass of Baikal methane hydrate = 6.67×10^{14} g / $0.134 = 4.98 \times 10^{15}$ g

 Allow ECF from (d)(i)
 - (iii) Volume of methane hydrate = $4.98 \times 10^{15} \text{ g} / 0.95 \text{ g cm}^{-3}$ = $5.24 \times 10^{15} \text{ cm}^3 (\text{or } 5.24 \times 10^9 \text{ m}^3)$ Allow ECF from (d)(ii)
- (e) (i) Unit cell mass = $957.07 \text{ g mol}^{-1} / 6.02 \times 10^{23} \text{ mol}^{-1}$ = $1.59 \times 10^{-21} \text{ g}$
 - (ii) Volume of unit cell = 1.59×10^{-21} g / 0.95 g cm⁻³ = 1.67×10^{-21} cm³ Length of unit cell edge = $(1.67 \times 10^{-21} \text{ cm}^3)^{\frac{1}{3}} = 1.19 \times 10^{-7} \text{ cm}$ One mark for correct volume of unit cell. Allow ECF from (e)(i)

- (iii) Volume of methane in unit cell = $8 \times 4/3 \times \pi \times (0.21 \times 10^{-9} \text{ m})^3$ = $3.10 \times 10^{-28} \text{ m}^3$ Volume of water in unit cell = $46 \times 4/3 \times \pi \times (0.14 \times 10^{-9} \text{ m})^3$ = $5.29 \times 10^{-28} \text{ m}^3$
- (iv) Percentage of space occupied = $(3.10 \times 10^{-28} + 5.29 \times 10^{-28}) \text{ m}^3 / 1.67 \times 10^{-27} \text{ m}^3$ 1 = 50%
- (f) $\Delta_f H^e (CH_4)_8 (H_2O)_{46} = 8\Delta_f H^e (CO_2) + 62\Delta_f H^e (H_2O) \Delta_c H^e (CH_4)_8 (H_2O)_{46}$ = $(8(-393.5) + 62(-285.8) - (-6690.4)) \text{ kJ mol}^{-1}$ = $-14177.2 \text{ kJ mol}^{-1}$

Forming methane hydrate from methane and water has the enthalpy change

$$8CH_4 + 46H_2O \rightarrow (CH_4)_8(H_2O)_{46}$$

 $\Delta_r H^{\theta} = (-14177.2 - 8(-74.8) - 46(-285.8)) \text{ kJ mol}^{-1} = -432 \text{ kJ mol}^{-1}$

Final answer scores full marks. One mark for a correct value for $\Delta_{\rm f} H^{\bullet}$ (CH₄)₈(H₂O)₄₆, one mark for the idea of using two cycles and one mark for correct second cycle calculation. If mistake is made in calculation of $\Delta_{\rm f} H^{\bullet}$ (CH₄)₈(H₂O)₄₆ but then this answer is used correctly in the second cycle this should be given two marks overall.

Question Total 16

3

Paper Total 65